If it's not what You are looking for type in the equation solver your own equation and let us solve it.
x^2-85x-400=0
a = 1; b = -85; c = -400;
Δ = b2-4ac
Δ = -852-4·1·(-400)
Δ = 8825
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}$
The end solution:
$\sqrt{\Delta}=\sqrt{8825}=\sqrt{25*353}=\sqrt{25}*\sqrt{353}=5\sqrt{353}$$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(-85)-5\sqrt{353}}{2*1}=\frac{85-5\sqrt{353}}{2} $$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(-85)+5\sqrt{353}}{2*1}=\frac{85+5\sqrt{353}}{2} $
| 4+4z=16 | | 153y=2 | | 0.707=x/24 | | Ax3=9 | | A=45+2a | | 15^3y=2 | | 2x+7=x+3+x | | 7x+755=5285 | | 13=28y+1 | | A=44a+2 | | 4÷6x+2=7÷3 | | 15x+20=2x | | 17x^2+19x=1848 | | 9x-15=8x+11 | | 10–2x=15 | | 4x+44=81 | | t−7=9 | | t−7=9t−7=9 | | g+15=22 | | r+12=17 | | (3+4x)=43 | | (2x+10)(-3)+20=x+46 | | 7x+12=2x+18 | | 2(6x-2)=-148 | | 10x-12=-1 | | 4x=5x+20 | | n^2+5n-1=3n+2(n+25) | | 10x-19=-1 | | (5x-2)/2-(3(2x+1))/3=-2(x-3)/3+2/3 | | 2(6x–7)–10=3(x–3)+8x–(15–x) | | 2v+-8=0 | | 6-2n=-14 |